

In class exercice:

1) Nutrient cycling in lakes

- a) What are the nutrient inputs into the lake epilimnion?
- b) What are the nutrient outputs from the lake epilimnion?
- c) Which additional process do you need to take into account for nitrogen?
- d) What is the main difference between the external and internal nutrients inputs?

1

1

In class exercice:

1) Nutrient cycling in lakes

- a) What are the nutrient inputs into the lake epilimnion?
- b) What are the nutrient outputs from the lake epilimnion?
- c) Which additional process do you need to take into account for nitrogen?
- d) What is the main difference between the external and internal nutrients inputs?
 - a) Rivers, atmospheric deposition, internal loading (nutrient from hypolimnion)
 - b) outflow, gross sedimentation (net ecosystem production), net sedimentation
 - c) Nitrogen fixation and denitrification

2

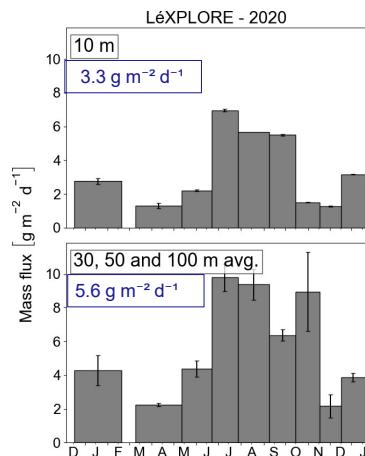
2

In class exercice:

1) Nutrient cycling in lakes

- a) What are the nutrient inputs into the lake epilimnion?
- b) What are the nutrient outputs from the lake epilimnion?
- c) Which additional process do you need to take into account for nitrogen?
- d) What is the main difference between the external and internal nutrients inputs?
The external nutrients comes from rivers and atmospheric deposition → new nutrients added to the system
The internal nutrients comes from the hypolimnion → recycled nutrients

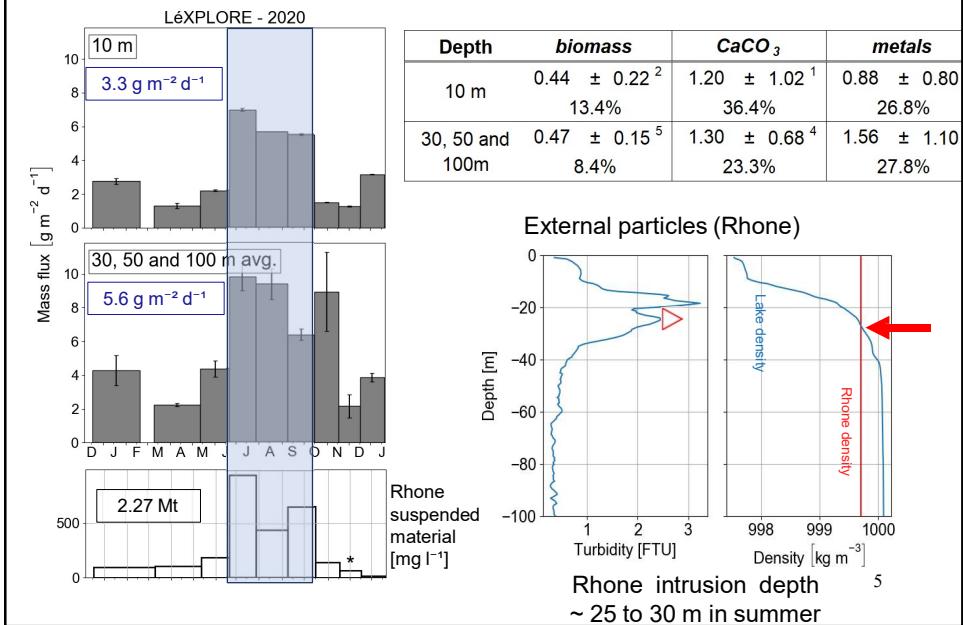
3


3

In class exercice:

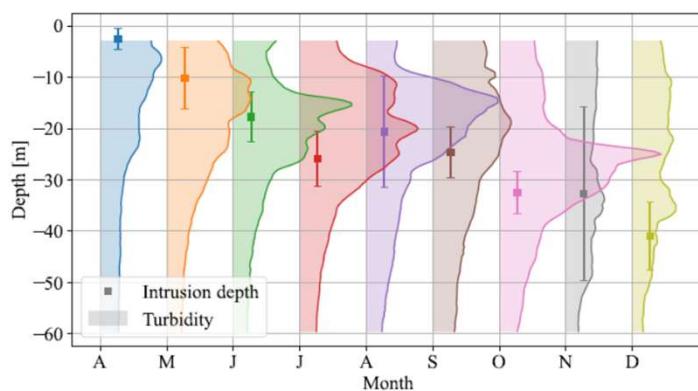
2) Sedimentation in Lake Geneva

In the figure below, the flux of the total mass of settling particles in Lake Geneva were measured at a depth of 10 m, and averaged at depths of 30, 50 and 100 m, using sediment traps.


- a. How do these fluxes vary seasonally?
How can you explain these seasonal variations?
- b. How would you explain the higher flux below 30 m (mean $5.6 \text{ g m}^{-2} \text{ d}^{-1}$) compared to the flux at 10 m (mean $3.3 \text{ g m}^{-2} \text{ d}^{-1}$)?

4

4


In class exercice:

5

In class exercice:

Average turbidity profiles at LéXPLORÉ in 2020 for each stratified month and density calculated intrusion depth

→ Rhône Intrusion between 10 and 30 m from June to September

6

6

In class exercice:

3) Oxygen depletion and net ecosystem production in Lake Geneva

- a) Estimate AHM of Lake Geneva in 1985. The stratification started on 22.04 with $10.09 \text{ gO}_2 \text{ m}^{-3}$ and ended on 4.11 with $9.08 \text{ gO}_2 \text{ m}^{-3}$. The mean hypolimnion depth is 151 m.
- b) Estimate the NEP of Lake Geneva in 1985. The net sedimentation over the productive season is 5.5 gC m^{-2}

7

7

In class exercice:

3) Oxygen depletion and net ecosystem production in Lake Geneva

- a) Estimate AHM of Lake Geneva in 1985. The stratification started on 22.04 with $10.09 \text{ gO}_2 \text{ m}^{-3}$ and ended on 4.11 with $9.08 \text{ gO}_2 \text{ m}^{-3}$. The mean hypolimnion depth is 151 m.

$$AHM_{1985} = \frac{151 \text{ m}}{196 \text{ Tage}} \times (10.09 \text{ g O}_2 \text{ m}^{-3} - 9.08 \text{ g O}_2 \text{ m}^{-3}) = \\ 0.78 \text{ g O}_2 \text{ m}^{-2} \text{ Tag}^{-1}$$

(Gl. 4)

8

8

In class exercise:

3) Oxygen depletion and net ecosystem production in Lake Geneva

b) Estimate the NEP of Lake Geneva in 1985. The net sedimentation over the productive season is 5.5 gC m^{-2}

$$NEP_{1985} = \left[0.78 \text{ g O}_2 \text{ m}^{-2} \text{ Tag}^{-1} \times \frac{106}{138} \times \frac{12 \text{ g C mol}^{-1}}{32 \text{ g O}_2 \text{ mol}^{-1}} \times 180 \text{ Tage} \right] +$$
$$5.5 \text{ g C m}^{-2} (180 \text{ Tage})^{-1} = 46 \text{ g C m}^{-2} (180 \text{ Tage})^{-1}$$

(Gl. 5)

9

9